LIGHT SCATTERING SIZE ESTIMATION OF NEARLY MONODISPERSE SPHERICAL PARTICLES IN THE MULTIVALUED REGION: A REMINISCENCE

Blahoslav Sedláček
Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, 16206 Prague 6

Received July 16, 1988
Accepted September 26, 1988

Dedicated to Prof. Otto Wichterle on the occasion of his 75th birthday.

Abstract

For the size estimation of large, nearly monodisperse spherical particles, the forward angle dissymmetry technique (FAD) has been used and the results compared with data obtained by the transmission electron microscopy (TEM) and integral turbidity ratio (ITR) methods. Starting with a certain relative particle size which depends on the chosen angle pair, the FAD functions go through several extremes and become multivalued. The possibility of the particle size estimation under such conditions and, also, without the knowledge of actual particle concentration (but knowing the relative refractive index), is discussed in this paper.

During the sixties, several excellent angular methods based on the Lorenz-Mie (L-M) theory were developed ${ }^{1-9}$ and tested on latexes for further use in the characterization of polymer and biopolymer particles, colloids and gels. Whilst these techniques reached their zenith within a few years, another very powerful method originated at the same time started its giddy career - the photon correlation spectroscopy; it witnesses by its top qualities that this boom has been lasting until now. It seemed some time ago that the classical light scattering methods are almost superfluous, but now a symbiosis is seen as the most rational solution. Although the classical methods are rather minor partners in the majority of problems to be solved, there are regions where they can be used equivalently or preferentially.

This paper deals with spherical particles (as a model) and classical L-M techniques: especially the forward angle dissymmetry method ${ }^{9,10}$ (FAD), being one of the so-called ratio methods, leads to a simple and rapid size estimation of (nearly) monodisperse particles with a plausible accuracy provided that their size does not exceed a certain limit, i.e. the first maximum of FAD.

If we have to do with large particles, we must expect the character of FAD to become much more complicated as the particle size increases. Usually, it is not easy to identify the size of large particles with a correct value of the parameter α explained
in Methods. Therefore, the purpose of this paper is to indicate under which conditions is it possible to estimate the particle size also in the multivalued region. Data thus obtained have been compared with results supplied by the electron microscopy and integral turbidity ratio (ITR) methods.

METHODS

Sample. A monodisperse polystyrene latex, kindly supplied by Dr Antl (Research Institute for Coating Materials, Prague) has been used in this study. The original suspension (1.0%) was diluted $10^{2} \times$ (ITR) and $10^{4} \times$ (FAD) with a stabilizer containing distilled water. The stock solutions thus obtained were further diluted according to the following schemes: ITR - 4:3:2: $: 1\left(10^{-5} \mathrm{ml} / \mathrm{ml}\right) ;$ FAD - $2.67: 2 \cdot 00: 1 \cdot 33: 0.67\left(10^{-7} \mathrm{ml} / \mathrm{ml}\right)$. The diluent was purified by pressure filtration through a G5 fritted disc; of the latex samples, only the basic were purified by partial sedimentation. The samples for electron microscopy were taken directly from cells used in the light scattering measurements; samples were prepared repeatedly.

Transmission electron microscopy (TEM). A common replica technique was used for treating the specimens for electron microscopy. The particle size on photographic plates were measured with an Abbs comparator (Zeiss, Jena). Six sets of photographs (enlargement 13000,17100 and 21850) with many hundreds of particles were evaluated to obtain a more reliable picture of the monodispersity of particles.

Integral turbidity ratio method (ITR). The particle size estimation by means of the ITR method leads to relatively accurate and reliable results, being a somewhat different version of classical Wallach's ${ }^{11}$ method of turbidity spectra. The turbidities τ are measured at wavelengths Λ_{0} $(435 \cdot 8 \mathrm{~nm}), \Lambda_{1}(546 \cdot 1 \mathrm{~nm})$ and $\Lambda_{2}(684.3 \mathrm{~nm})$. Their ratios $T_{01}=\tau_{0} / \tau_{1}, T_{02}=\tau_{0} / \tau_{2}$, and $T_{12}=\tau_{1} / \tau_{2}$ are related to the relative (α) or absolute (L) particle size by a general equation

$$
T_{\mathrm{ab}}=\frac{\tau_{\mathrm{a}}\left(\lambda_{0} \kappa^{\mathrm{a}}, \alpha / \kappa^{\mathrm{a}}, m\right)}{\tau_{\mathrm{b}}\left(\lambda_{0} \kappa^{\mathrm{b}}, \alpha / \kappa^{\mathrm{b}}, m\right)}=\kappa^{-2(\mathrm{~b}-\mathrm{a})} \frac{S_{\mathrm{a}}\left(\alpha / \kappa^{\mathrm{a}}, m\right)}{S_{\mathrm{b}}\left(\alpha / \kappa^{\mathrm{b}}, m\right)},
$$

where L is the particle diameter, λ is the wavelength in the medium (Λ / n), $\lambda_{0}=326.7 \mathrm{~nm}$, $\alpha=\pi L / \lambda$ is the relative size of particles, $m=n^{\prime} / n$ is the relative refractive index (n^{\prime} and n being the refractive indices of the particle and system, respectively), and $\kappa=1.2531$ is the quotient of a sequence of wavelengths; the function S depends only on α and m, not on λ (for details see ${ }^{12}$). The desired particle size may be found from tables ${ }^{12}$ or may be calculated in terms of the $\mathrm{L}-\mathrm{M}$ theory.

A Perkin-Elmer-Hitachi spectrometer (Model 340) was used for transmission measurements of light scattering with rectangular cells of 10 mm depth. Normally, the three wavelengths given above were used for the estimation of turbidity, unless another set of wavelengths is to be preferred for an unambiguous choice of correct data.

Forward angle dissymmetry method (FAD). Most theoretical light scattering functions, used for the particle size estimation in monodisperse systems, have a distinctly oscillating character, especially, when the angular functions are considered. Except the angular intensity method for single particles ${ }^{13,14}$ (where the experimental data are compared directly with the theoretical angular spectra using a computer data bank), all other methods dealing with particle systems give the angular spectra more or less deformed by "omnipresent" polydispersity. Slightly polydisperse systems were shown by many authors to be amenable to theoretical functions valid for
monodisperse system, but this is very limited in our case owing to the strong sensitivity of this method to latex polydispersity ${ }^{9}$. A deviation from uniformity can be detected by the variation of wavelength, the angle ratio, or both ${ }^{9}$. When working with a nearly monodisperse system of very large particles, one must expect a difficulty which hardly can be surmounted by using the oscillating functions. This problem, very similar to that of passing Scylla without falling victim to Charybdis, seems to be soluble only under favourable conditions.

The forward angle dissymetry is defined as a ratio ζ of the scattering intensities $i_{\boldsymbol{\theta} 1}$ and $i_{\boldsymbol{\theta} 2}$ at two angles θ_{1} and θ_{2}. Thus we have $\zeta=i_{\theta 2} / i_{\theta 1}$ expressed by Maron's plot ${ }^{9}$ for $i_{\theta 2} / i_{\theta 1}$; however, our plot for $i_{\boldsymbol{\theta}} / i_{\boldsymbol{\theta} 2}$, i.e. the reciprocal plot $\zeta=i_{\boldsymbol{\theta} 1} / i_{\boldsymbol{\theta} 2}$, is used in this paper. The interval between the individual angles in Maron's paper is usually 10°, while in this paper it is 15°. The L-M data have been calculated from tables ${ }^{15}$ using $\theta_{1} / \theta_{2}=30 / 45,45 / 60$ and $60 / 75$ in unpolarized and polarized light. Measurements were carried out at green (546.1 nm) and blue (435.8 nm) wavelengths, which correspond to $\lambda_{\mathrm{g}}=409.3$ and $\lambda_{\mathrm{b}}=326.7 \mathrm{~nm}$ in the milieu used, and thus the value of one α is 130.28 and 103.99 nm , respectively.

Scattering intensities have been measured with Sofica apparatus at angles $30,45,60$ and 75° (FAD). As all angles are situated in the forward quadrant, experimental intensity ratios must be corrected for the volume seen by the photomultiplier; the following correction factors are to be used: $0.707(30 / 45), 0.818(45 / 60)$ and $0.897(60 / 75)$.

The use of the forward angle dissymmetry method brings several advantages, the most important being: I) the FAD method enlarges considerably the extent of measurement, i.e. the first maximum (for $m=1.20$ and ($30 / 45$)) can be reached at $\alpha=5 \cdot 1$, as compared with $\alpha=2.0$ obtained by classical dis ymmetry (Debye's method); 2) there is no need of absolute concentration data and extrapolation of relative data is quite satisfactory; 3) also, a negligible dependence on the relative refractive index, m, makes possible the size estimation without precise knowledge of m provided that the particles are sufficiently small (for $m=1.20$ about $\alpha<4$).

RESULTS AND DISCUSSION

Transmission Electron Microscopy (TEM)

The TEM method was used to collect independent data on the number-average particle size and its percent deviation. Data thus obtained are usually considered as a representative standard, which is however not well-deserved; therefore, we tried to reduce possibility of misleading observations (due to experimental errors and inadequate choice of objects) by measuring six independent sets of particle ensembles, some hundred particles each. The results given in Table I clearly show that the particles are nearly monodisperse; the extreme particle sizes differ only slightly from the average (by 0.76 to 1.73%). However, as only separate particles were measured, the presence of some contaminants (either real or fictitious) cannot be fully excluded in the whole sample. The reason for this may consist not only in a) an inaccurate enlargement of micrographs in the individual sets, but also in b) a low a priori polydispersity, c) small but possible aggregation (proceeding for different times in the stock solution, or changing during purification of samples), or d) combination of some individual factors. Unfortunately, this uncertainty can hardly be reduced, probably with the exception of item a).

Integral Turbidity Ratio Method (ITR)

The ITR method, shortly described in Methods, offers a very simple but adequate approach to the problem. The results thus obtained are presented in Table II: two

Table I
Particle size of polystyrene latex estimated by electron microscopy

Sample	nm	$\pm \mathrm{nm}$	$\pm \%$	Max.	Enlargement
	773	13.3	1.73	809	$13000 \times$
2	764	11.9	1.56	785	$13000 \times$
3	800	6.6	0.83	810	$17100 \times$
4	801	7.7	0.97	808	$17100 \times$
5	776	5.9	0.76	786	$17100 \times$
6	778	13.3	1.71	791	$21850 \times$
Average	782	9.8	1.26	798	

Table II
Estimation of polystyrene latex particles by ITR method

c^{a}	τ_{0} / τ_{1}	τ_{0} / τ_{2}	τ_{1} / τ_{2}	α_{01}	α_{02}	α_{12}	L_{01}	L_{02}	L_{12}
c_{1}	1.275	1.821	1.428	8.08	7.87	7.64	840	818	795
c_{2}	1.278	1.826	1.428	8.03	7.85	7.64	835	816	795
c_{3}	1.284	1.835	1.429	7.93	7.79	7.59	825	810	789
c_{4}	1.292	1.846	1.431	7.83	7.73	7.54	814	804	784
$c_{0}{ }^{b}$	1.295	1.853	1.432	7.78	7.70	7.70	805	800	780
\bar{c}^{c}	1.285	1.832	1.429	7.93	7.79	7.58	824	810	788
c_{1}	1.280	1.832	1.431	8.01	7.83	7.58	833	814	788
c_{2}	1.280	1.835	1.433	8.01	7.81	7.52	833	812	782
c_{3}	1.284	1.842	1.435	7.96	7.75	7.46	827	806	776
c_{4}	1.293	1.872	$1.448 ?$	7.81	7.61	$7.17 ?$	812	791	$746 ?$
$c_{0}{ }^{b}$	1.290	1.853	1.438	7.90	7.70	7.32	808	800	761
\bar{c}^{c}	1.284	1.845	1.436	7.93	7.74	7.41	823	805	771

[^0]independent measurements were made. The individual ratios $\left(\tau_{0} / \tau_{1} ; \tau_{0} / \tau_{2} ; \tau_{1} / \tau_{2}\right)$ differ almost negligibly from each other and it seems that they are not concentration dependent; however, a small trend can be recognized and thus respected in the individual columns, especially when extrapolated to zero concentration. Data expressed in α 's and L 's (where L is given in nm) were taken from tables published some time ago ${ }^{12}$. The results obtained for both measurements are very similar, while the data extrapolated $\left(c_{0}\right)$ or averaged (\bar{c}) are intrinsically almost identical (see Table II). As expected, data for \bar{c} are higher than those for c_{0} due to extrapolation of c_{0}-data to zero concentration, which are always lower:
\[

$$
\begin{aligned}
& L\left(\text { for } c_{0}\right): 807 ; 800 ; 771 \mathrm{~nm} \\
& L(\text { for } \bar{c}): 823 ; 808 ; 780 \mathrm{~nm}
\end{aligned}
$$
\]

This is not necessarily a measure of the whole polydispersity of the sample: indeed, a very small portion of aggregates or other contaminants could be responsible for the effect observed. However, the unequal response of the individual ratios in each triad, decreasing in the sequence L_{01}, L_{02} and L_{12}, gives evidence about the presence of some large particles in the system. It is interesting, even if not persuasive, that each of the triads covers the particle system nearly from the weight average to the number average.

Forward Angle Dissymmetry Method: Exposition

Here, it is perhaps necessary to recall Fig. 1 for better understanding the ITR and FAD functions. At the bottom, a graph (in two parts) of the ITR function is presented, concerning the region from $\alpha=0$ to $\alpha=20$ (for $m=1.20$ and wavelength ratio $435 \cdot 8 / 546 \cdot 1 \mathrm{~nm})$. The other graphs of the FAD function are presented above, also in two parts; only graphs for angle ratios $30^{\circ} / 40^{\circ}, 45^{\circ} / 60^{\circ}$ and $60^{\circ} / 75^{\circ}$ (unpolarized light) are given. Insets in the graphs show how complicated in details the curves are. For situating graphs in this figure correctly, it is useful to know the limiting values of ζ for $\alpha=0$; also, the remaining data for polarized components are given here (u unpolarized, v vertically and h horizontally polarized).

Polarization	$30^{\circ} / 45^{\circ}$	$45^{\circ} / 60^{\circ}$	$60^{\circ} / 75^{\circ}$
u	$1.1 \dot{6}$	1.20	1.17
v	1.00	1.00	1.00
h	1.50	2.00	3.73

A suitable approach should be found for obtaining adequate data about large particles by the FAD method, which makes the extrapolation of steep and curved data trustworthy. To avoid multivalued results, a simple but probably the best
solution is to extend the region preceding the first maximum. This can be achieved ${ }^{9}$ by a) shifting the measurements to smaller angles and b) using a lower difference between angles (e.g. 10° or less). The effect obtained can be seen in a considerable extension of a maxima-free domain, but partly at the price of a lower accuracy of both estimations. In practice, this process cannot exceed a certain limit.

However, this paper should check whether it is possible to make an adequate estimation also within the multivalued region. Therefore, conditions have been chosen where the number of extremes in a given region (2 or $2.5 \mu \mathrm{~m}$) reaches one to eight maxima. The system is considerably complicated by the coexistence of several factors: in addition to the influence of the low remaining polydispersity, thermodynamic and optical problems play the most important part here. The results ob-

Fig. 1
Graphs of the ITR and FAD methods for the intervals $\alpha=0-10$ and $10-20 . \alpha=\pi L / \lambda$; $T_{01}=\tau_{0} / \tau_{1} ; \zeta=i_{\theta 1} / i_{\theta 2}$ for $30^{\circ} / 45^{\circ}, 45^{\circ} / 60^{\circ}$ and $60^{\circ} / 75^{\circ}$. A and B correspond to the first and the second part of the graph, respectively. Insets are located in FAD, $45^{\circ} / 60^{\circ}$ and $60^{\circ} / 75^{\circ}$

Table III

Particle size ($L, \mathrm{~nm}$) estimation by the FAD method: extrapolation of scattering ratios ζ for $c \rightarrow 0$ (unpolarized light, $546 \cdot 1 \mathrm{~nm}$)

tained, which are not easy to survey, are experimental in nature, i.e not enough supported by some theoretical approach. Data presented here are only a small portion of those measured, but sufficient to understand better the method, at least experimentally.

Particle Size Estimation by FAD Method

It is well-known ${ }^{9}$ that the concentration dependence of the FAD method may be conspicuously curved; it is therefore always necessary to extrapolate the data obtained to zero concentration. In Maron's notation ${ }^{9}$ the values increase with concentration: this means that in our "reciprocal" notation the values must decrease. This was however not the case in many of our observations. To explain such a discrepancy, one should take into account that Maron's measurements are situated prior to the first extreme (maybe except the largest particles), and thus his finding is adequate, approaching the extreme from the left side (ascending branch). If we deal with the opposite side of the extreme (descending branch), the situation is different: we must reckon with either increasing or decreasing trends in the concentration dependence and, necessarily, also rather compensated forms are to be expected. All such forms can be seen in Table III.

However, to demonstrate this dependence to be valid, we have chosen another approach than that used by Maron. In addition to the extrapolation of ζ against c (in our notation), we used that of α or L against c, the latter being shown in Table III. In all measurements, using the green and blue light, polarized or unpolarized, the emerging picture was nearly the same; accordingly, only one example is given from the numerous measurements made. This extrapolation seems to be much less steep and curved, and often is found to be nearly quite compensated. The reason for this may be derived from the observation that, in the region of steep maxima, a relatively large change in ζ corresponds to a very small change in α or L. In turn, this might also explain (at least in part) that ζ may have lower value than expected (see Table III, 45/60 compared with $60 / 75$), probably as a result of a not quite accurate measurement, especially in the vicinity of extremes. Moreover, being in the region with the almost compensated behaviour, the data obtained are practically identical.

It should be elucidated now by checking the individual factors whether the concentration dependence only could be used for independent elimination of false choice from two, four or six possible solutions (e.g. see Table III). For this purpose, Table IV collects data obtained for 546.1 and $435 \cdot 8 \mathrm{~nm}$, either unpolarized or polarized (v). These data are expressed in $\alpha=\pi L / \lambda$, extrapolated for $c \rightarrow 0$, i.e. α_{0}^{ζ}, in L_{0}^{ζ} (extrapolation of ζ against c) and in L_{0} (extrapolation of L against c); only the first two data (row 1,2) in each blocks ($\mathrm{A}-\mathrm{D}$) have been taken into account. One can see that almost all "unpolarized" data are compensated, i.e. L_{0}^{5} and L_{0} data are practically identical. The vertically polarized data are compensated only partly,

Table IV
Particle size ($L, \mathrm{~nm}$) estimation by FAD method: abbreviated data for a set of measurements at $546 \cdot 1$ and $435 \cdot 8 \mathrm{~nm}$, both with unpolarized (u) and vertically (v) polarized light

i.e. the correlation between blocks u and v is rather poor, but it must be taken into account that the deviations are relatively low, usually less than 5%, rarely more.

Table V
Theoretical FAD data for $\alpha_{g}=6.60,7.40,8.00$ and $\alpha_{b}=8.27,9.27,10.02$. (Is the solution unambiguous?)

Unpolarized (u)				Vertical (v)			Horizontal (h)		
	$30^{\circ} / 45^{\circ}$	$45^{\circ} / 60^{\circ}$	$60^{\circ} / 75^{\circ}$	$30^{\circ} / 45^{\circ}$	$45^{\circ} / 60^{\circ}$	$60^{\circ} / 75^{\circ}$	$30^{\circ} / 45^{\circ}$	$45^{\circ} / 60^{\circ}$	$60^{\circ} / 75^{\circ}$

$964 \mathrm{~nm}\left(\alpha_{\mathrm{b}}=9.27\right)^{c}$

ζ^{a}		$10 \cdot 57$	$1 \cdot 80$	$1 \cdot 20$
f		942	847	763
g	964	964	964	
h	-	-	1019	
i	2130	2175	-	
j	-	2227	-	

15.00	1.53	0.77
925	840	758
964	964	964
-	-	1021
-	2127	2157
2219	2287	2226

7.85	1.90	2.04
946	874	790
964	964	964^{d}
-	-	1080
-	2131	2178
-	-	2265

[^1]
Table V

(Continued)

Unpolarized (u)				Vertical (v)			Horizontal (h)		
Block -- $30^{\circ} / 45^{\circ}$		$45^{\circ} / 60^{\circ}$	$60^{\circ} / 75^{\circ}$	$30^{\circ} / 45^{\circ}$	$45^{\circ} / 60^{\circ}$	$60^{\circ} / 75^{\circ}$	$30^{\circ} / 45^{\circ}$	$45^{\circ} / 60^{\circ}$	$60^{\circ} / 75^{\circ}$

$1042 \mathrm{~nm}\left(\alpha_{\mathrm{g}}=8.00\right)^{b}$

ζ^{\square}	$2 \cdot 10$	$2 \cdot 20$	$5 \cdot 56$	1.98	1.73	13.23	$2 \cdot 20$	$2 \cdot 93$	2.94
A	861	787	770	843	783	759	881	818	816
B	1042	1042	1042	1042	1042	1042	1042	1042	$1042^{\text {d }}$
C	-	-	-	-	1212	-	-	1253	1135
D	2310	2246	-	2302	2225	-	2328	2300	--
E	2447	2532	-	2439	2534	2516	2446	2491	2514

$1042 \mathrm{~nm}\left(\alpha_{\mathrm{b}}=10.02\right)^{c}$

ζ^{a}	$5 \cdot 81$	5.78	$1 \cdot 70$	5.69	9.14	1.76	$5 \cdot 94$	$4 \cdot 14$	1.63
F	-	775	775	-	761	776	-	-	764
G	896	1037	933	882	1071	917	911	799	1007
H	1042	1042	1042	1042	1042	1042	1042	1042	$1042^{\text {d }}$
I	-	-	-	-	-	1203	-	1078	-
J	2184	2182	2151	2185	2172	2126	2141	2192	2204
K	-	1118	2239	-	2213	2241	-	2236	2240

${ }^{a} \zeta=i_{\theta 1} / i_{\theta 2}$, size of particles expressed in $\alpha=\pi L / \lambda ;{ }^{b} \alpha_{g}$ (green light); ${ }^{c} \alpha_{b}$ (blue light); ${ }^{d}$ basic data are in italics.

Another complication occurs when going to larger particles. For smaller particles the data expressed in α are very similar for the two neighbouring scales, e.g. $m=1 \cdot 15$ and $m=1 \cdot 20$; under such conditions the differences (in parentheses) are as follows: $2.0 \alpha(0.0003), 3.0 \alpha(0.0426)$ and $4.0 \alpha(0.2424)$. However, in the region of large particles the differences become irregular (sometimes negative because of disturbed coincidence): $10.0 \alpha(-1.1225), 15.0 \alpha(0.8142), 20.0 \alpha(6.0896)$ and $25.0 \alpha(-1.5963)$. It is no longer valid that the FAD function can be used in a broad region of refractive indices; rather, the opposite is true, except in the nearest neighbourhood of the reference function given in the tables ${ }^{10}$.

The situation is quite opposite with regard to the coincidence of extremes for unpolarized and vertically or horizontally polarized light: it is almost perfect over the whole region from $\alpha=0$ to $\alpha=25$, and the peaks coincide within the step of the tables $(\Delta \alpha=0.2)$. There is no possibility to distinguish the right solution from those available.

FAD Identity Problem

To identify the correct solution among many solutions available in the multivalued region, we compiled theoretical data for selected particle sizes, i.e. $860 \mathrm{~nm}\left(\alpha_{\mathrm{g}}=6.60\right.$, $\alpha_{\mathrm{b}}=8.27$), $964 \mathrm{~nm}\left(\alpha_{\mathrm{g}}=7.40, \alpha_{\mathrm{b}}=9.27\right)$, and $1042 \mathrm{~nm}\left(\alpha_{\mathrm{g}}=8.00, \alpha_{\mathrm{b}}=10.02\right)^{*}$; these data are very similar to those which appeared in Table IV and V (and those not published in extenso). All data are related to the respective sizes (i.e. 860, 964 or 1042 nm) of particles which are considered as perfectly monodisperse. This approach was selected with the aim to find some distinction between the right solution and those inadequate. It revealed also some difference between the results for green (546.1 nm) and blue (435.8 nm) light used in individual measurements.

Three sets of data (double blocks $1-8, a-j, A-K$) are presented in Table V, divided into two parts (blocks) and referring either to the green or blue light, polarized or unpolarized. The first block ($1-4,860 \mathrm{~nm}$) differs considerably from all other blocks in that it encompasses complete data for polarized and unpolarized light. While the first row is constant (selected standard), the second row has a decreasing character, i.e. the apparent size of particles decreases with a sequence $30^{\circ} / 45^{\circ}, 45^{\circ} / 60^{\circ}$ and $60^{\circ} / 75^{\circ}$ within each triad. However, the triads themselves have a different sequence: $u-h-v$. Other rows (3 and 4) are very consistent, either slightly increasing or decreasing. The second block ($5-8$; blue light) differs considerably from the preceding case: one can see that the data in rows $6-8$ are not complete, i.e. the basic row 5 is the only solution.

The next double block $(\mathrm{a}-\mathrm{j})$ deals with the size of 964 nm . Owing to many "vacancies", only f and g can be taken into account. All individual triads have a decreasing character, but these triads themselves have a different sequence: $h-u-v$. We can see that, by analogy to the preceding case (see 1,2), the data in f are too much disturbed and cannot be accepted.

A similar situation pertains also to the third double block ($\mathrm{A}-\mathrm{K}$). Data in A are disturbed with respect to G, having a sequence $h-u-v$; the remaining data are incomplete and thus incompetent. Data in F , I , and K are incomplete and may be cancelled; further, a disturbance in G (the sequence being not rational) leads to annulation of these data. Only J is acceptable and could be taken into account.

Now, it would be useful to confront theoretical data with those obtained from the experiment. If we compare Table V (row 1) with Table III (column $60^{\circ} / 75^{\circ}$, F), one can see that the data are nearly identical; however, the data in column $30^{\circ} / 45^{\circ}, \mathrm{F}$ (Table III) are not much but distinctly higher, probably due to some polydispersity present in the sample. Row 2 (Table V) shows that the polydispersity could not be too high, because the data are nearly the same as those in Table III, G.

[^2]Table VI
Particle size estimation by FAD method: test of adequacy. $\zeta=i_{\theta_{1}} / i_{\theta_{2}}, \zeta_{\mathrm{g}}$ for green (546 nm) and ζ_{b} for blue (436 nm) light. α_{g}^{1} and α_{b}^{1} are, respectively, the relative particle sizes $(\alpha=\pi L / \lambda)$ related to lower (I) data (see Table III, row F) for green and blue light; $\alpha_{b g}^{l}=\alpha_{b}^{l} / 1 \cdot 2531$, which represents the deviation of "green data" from "blue data", expressed also in \%. Similarly, data with superscript H are related to higher data (see row G of the same Table)

Block	$30^{\circ} / 45^{\circ}$				$45^{\circ} / 60^{\circ}$				$60^{\circ} / 75^{\circ}$			
	c_{1}	c_{2}	c_{3}	c_{4}	c_{1}	c_{2}	c_{3}	c_{4}	c_{1}	c_{2}	c_{3}	c_{4}
Unpolarized light												
ζ_{g}	1.46	1.44	1.41	$1 \cdot 38$	6.08	$6 \cdot 28$	$6 \cdot 12$	$5 \cdot 33$	$1 \cdot 00$	0.96	0.97	0.99
ζ_{b}	$5 \cdot 74$	6.09	$6 \cdot 14$	$5 \cdot 42$	1.54	1.53	1.53	1.45	1.96	1.90	1.75	1.61
α_{g}^{1}	6.87	$6 \cdot 90$	$6 \cdot 91$	6.93	$6 \cdot 55$	$6 \cdot 56$	$6 \cdot 55$	6.49	$6 \cdot 56$	6.58	$6 \cdot 57$	6.56
α_{b}^{1}	$8 \cdot 59$	$8 \cdot 62$	8.63	8.56	$8 \cdot 28$	8.28	$8 \cdot 29$	$8 \cdot 34$	7.51	$7 \cdot 53$	7.49	$7 \cdot 44$
$\alpha_{b g}^{1}$	$6 \cdot 85$	$6 \cdot 88$	$6 \cdot 88$	$6 \cdot 83$	$6 \cdot 61$	6.61	6.62	$6 \cdot 65$	5.99	6.01	5.98	5.94
\%	$0 \cdot 29$	$0 \cdot 22$	0.36	$0 \cdot 14$	-0.92	-0.76	-0.92	-2.50	8.69	8.66	8.98	9.45
$\alpha_{\mathrm{g}}^{\mathrm{H}}$	7.74	$7 \cdot 73$	$7 \cdot 72$	7.69	$7 \cdot 42$	7.41	$7 \cdot 42$	$7 \cdot 49$	7.24	$7 \cdot 22$	7.23	$7 \cdot 24$
$\alpha_{\text {b }}{ }_{\text {b }}$	10.04	9.94	9.93	$10 \cdot 15$	$9 \cdot 18$	$9 \cdot 18$	$9 \cdot 18$	$9 \cdot 17$	8.88	8.90	8.95	$9 \cdot 00$
$\alpha_{b g}^{\mathrm{H}}$	8.01	7.93	7.92	$8 \cdot 10$	$7 \cdot 33$	$7 \cdot 33$	$7 \cdot 33$	$7 \cdot 33$	7.08	$7 \cdot 10$	$7 \cdot 14$	$7 \cdot 18$
\%	-3.49	-2.65	-2.66	$-5 \cdot 33$	$1 \cdot 21$	1.08	$1 \cdot 21$	$2 \cdot 14$	$2 \cdot 21$	1.66	1.24	0.83
Vertically polarized light												
ζ_{g}	1-12	$1 \cdot 12$	$1 \cdot 11$	1.07	$7 \cdot 37$	7.97	7.89	7.87	0.63	0.57	0.62	0.72
ζ_{b}	$6 \cdot 64$	7.07	7.07	5.75	$1 \cdot 16$	$1 \cdot 13$	1.07	1.09	1.77	1.61	1.55	1.40
α_{8}^{1}	6.87	6.87	$6 \cdot 88$	6.93	$6 \cdot 49$	6.52	6.52	6.42	6.52	$6 \cdot 55$	6.53	6.48
$\alpha_{b}^{\text {b }}$	$8 \cdot 55$	8.57	$8 \cdot 58$	8.49	$8 \cdot 27$	8.29	$8 \cdot 30$	$8 \cdot 30$	7.47	$7 \cdot 46$	$7 \cdot 44$	7.42
$\alpha_{b g}^{l}$	6.82	$6 \cdot 84$	6.84	$6 \cdot 87$	$6 \cdot 60$	6.61	6.62	$6 \cdot 62$	5.96	$5 \cdot 95$	$5 \cdot 94$	5.92
\%	0.73	0.44	0.58	$0 \cdot 87$	-1.69	-1.38	-1.53	$-3 \cdot 12$	8.59	$9 \cdot 16$	9.03	8.64
$\alpha_{\mathrm{g}}^{\mathrm{H}}$	$7 \cdot 71$	$7 \cdot 73$	7.70	$7 \cdot 67$	7.39	$7 \cdot 34$	$7 \cdot 37$	$7 \cdot 41$	$7 \cdot 21$	$7 \cdot 20$	$7 \cdot 21$	$7 \cdot 25$
$\alpha_{\text {b }}^{\text {H }}$	9.84	9.78	$9 \cdot 78$	9.98	$9 \cdot 18$	9.23	$9 \cdot 17$	$9 \cdot 17$	$8 \cdot 82$	8.87	$8 \cdot 88$	8.93
$\alpha_{b g}^{\mathrm{H}}$	$7 \cdot 85$	7.80	$7 \cdot 80$	7.96	7.33	$7 \cdot 36$	$7 \cdot 32$	$7 \cdot 32$	7.04	7.08	7.09	$7 \cdot 13$
\%	-1.82	-1.03	-1.30	-3.78	$0 \cdot 81$	-0.27	$0 \cdot 68$	1.21	$2 \cdot 36$	1.67	1.66	1.66

[^3]The concentration dependence along with the combination of green and blue light and the use of unpolarized and polarized light, are certainly good approaches to the problem studied. Table VI was therefore prepared using experimental data from Tables III and IV (and those not given explicitly). Here, α^{1} relates to lower values of α (e.g. Table III, F) and α^{H} to higher values of α (e.g. Table III, G) of each couple; $\alpha_{b g}^{1}=\alpha_{b}^{1} / 1.2531$ are data calculated on the basis of α_{b}^{1}, the results being compared with the original α_{g}^{1} data. The difference between α_{g}^{1} and recalculated data from α_{g}^{b} is expressed in \%. Similarly, data with superscript H lead to results for a higher particle size (usually, on the descending branch of a peak).

Inspection of Table VI leads to the conclusion that the behaviour of data for unpolarized and polarized light is very similar, showing increased per cent deviations in the same place in both parts of this table. The most striking is the appearance of deviations in the sixth row of the third column in either part of the table. Explanation of such observations is difficult. More light can be thrown when seeking the positions of the respective intersects in Fig. 1: in our case, for a size around $\alpha=7$, the graphs show that they have a broad and gentle minimum (for $30^{\circ} / 45^{\circ}$ and $60^{\circ} / 75^{\circ}$) or a steep peak (for $45^{\circ} / 60^{\circ}$). As the former are very shallow, each error in the ordinate brings about a great shift in the abscissa; the opposite is valid for the case $45^{\circ} / 60^{\circ}$, where some change in the ordinate leads to a very small change in the abscissa, which is decisive for the size measurement. (Still, we must accent that the errors reach 10% only quite exceptionally, usually being less than $1-2 \%$.) Moreover, the horizontal instability of data in minima and the vertical instability in maxima may lead to deformations and thus not quite adequate results.

CONCLUSIONS

1. Data obtained for perfectly monodisperse particles can, in principle, be distinguished from each other and identified as the only solution to the problem provided that the measurements are made at two or more wavelengths (see Table V).
2. Nearly monodisperse particles can be estimated in the following steps: a) Usual measurement by the FAD method; b) collection and identification of possible solutions to the problem; c) calculation of the FAD functions for the most probable solutions; d) selection of the most probable data on the basis of comparison between experimental and theoretical functions. The most powerful selection is that leading to elimination of inadequate data by using two or more wavelengths or FAD ratios; also, elimination of the most disordered data in sequences may be useful.
3. It cannot be excluded that the FAD functions are always unambiguous. In such a case, two additional suitable techniques are recommended: 1) Angle ratio variation ${ }^{9}$ and 2) use of another technique, like the ITR method: after situating roughly the order of the particle size by the ITR method, the FAD method can be used with much higher sensitivity (by two orders of magnitude).

The author is indebted to Dr F. Lednický for electron micrographs and to Mrs E. Simácková for technical assistance.

REFERENCES

1. Nakagaki M., Heller W.: J. Chem. Phys. 32, 835 (1960).
2. Pangonis W. J., Heller W., Economou N. A.: J. Chem. Phys. 34, 960 (1961).
3. Heller W., Pangonis W. J., Economou N. A.: J. Chem. Phys. 34, 971 (1961).
4. Stevenson A. F., Heller W., Wallach M. L.: J. Chem. Phys. 34, 1789 (1961).
5. Heller W., Tabibian R.: J. Phys. Chem. 66, 2059 (1962).
6. Bhatnagar H. L., Heller W.: J. Chem. Phys. 40, 480 (1964).
7. Heller W.: J. Chem. Phys. 40, 2700 (1964).
8. Maron S. H., Pierce P. E., Elder M. E.: J. Macromol. Sci., Phys., B I, 28 (1967).
9. Maron S. H., Pierce P. E.: J. Polym. Sci. 27, 183 (1969).
10. Sedláček B.: Collect. Czech. Chem. Commun. 35, 2625 (1971).
11. Wallach M. L., Heller W., Stevenson A. F.: J. Chem. Phys. 34, 1796 (1961).
12. Sedláček B., Verner B., Bárta M., Zimmermann K.: Collect. Czech. Chem. Commun. 44, 2064 (1979).
13. Gucker F., Egan J.: J. Colloid Sci. 16, 68 (1961).
14. Tůma J.: Thesis. Optical Properties of Aerosols and Light Scattering on Individual Particles. Czech Technical University, Prague 1980.
15. Denman H. H., Pangonis W. J., Heller W.: Angular Scattering Functions for Spheres. Wayne State University Press, Detroit 1966.
[^4]
[^0]: ${ }^{a}$ Concentration of particles (even if exact data not needed for estimation), $c_{1}=4.10^{-5} \mathrm{ml} / \mathrm{ml}$, further diluted in the sequence $4: 3: 2: 1 ;{ }^{b} c_{0}$ and \bar{c}, respectively, are the related "concentrations", corresponding to that extrapolated (for $c \rightarrow 0$) and to that being an average of data, i.e., to extrapolated or averaged ratios of τ_{0} / τ_{1}, etc. or of α_{01}, etc.

[^1]: Collect. Czech. Chem. Commun. (Vol. 54) (1989)

[^2]: * Here g and b stand for green and blue, respectively, when dealing with monodisperse particles.

[^3]: ${ }^{a}$ Concentration of particles, see Table III.

[^4]: Translated by the author.

